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J .  P H Y S .  A ( G E N .  P H Y S . ) ,  1969 ,  S E R .  2 ,  V O L .  2 .  P R I N T E D  I N  G R E A T  B R I T A I N  

Scattering of focused electromagnetic waves by infinite 
cylinders 

A. R. JOXES 
Department of Physics, Royal Holloway College, Egham, Surrey 
MS.  receiaed 2nd August 1968, i n  revisedform 9th January 1969 

Abstract. The field near a line focus is developed in cylindrical coordinates, and the 
result is expressed in a series expansion readily applicable to scattering by an infinite 
cylinder. The properties of a line focus are found to be similar to those of a point 
focus. Scattering by metal cylinders is discussed, and it is shown that scattering of 
focused waves can be obtained by a simple modification of the existing theory for 
plane-wave scattering. 

1. Introduction 
Plasma diagnostics with microwaves is an established technique (Heald and Wharton 

1965). However, the plasma often has dimensions of the same order as the microwave 
wavelength. I n  this case scattering is important, and leads to large errors if the infinite 
plane-slab approximation is used (Jones and Wooding 1967). If the plasma has a simple 
geometry the scattering problem can be solved rigorously, and a study of the scattered 
radiation can be used to measure the electron density (Jones and Wooding 1966). 

An alternative is to reduce the incident beam width to be less than the plasma cross 
section, improving the infinite slab approximation. This has the added attraction of 
improved spatial resolution. The  reduction in beam width may be achieved by the use of 
focusing lenses (Heald and Wharton 1965). 

The  Fresnel-Kirchhoff diffraction theory for the field near a point focus is well known 
(Born and Wolf 1964). Several authors have discussed the solution with emphasis on 
microwave lenses and the application to plasma diagnostics (Carswell and Richard 1964, 
Musil 1965). 

Theory and experiment (Carswell and Richard 1964) show that the beam width near 
the focus is always finite. The  minimum beam width obtainable is of the order of the 
wavelength. For plasmas of this size scattering is still significant. This paper examines 
this scattering for a line focus and infinite metal cylinders. 

2. Theory of the line focus 
The coordinate system used is shown in figure 1. The  line focus is at the origin F. 

At the lens aperture the wave front is AA’, and by Huygens’ principle each point Q on the 
wave front emits a spherical wave. The  total effect at the point of observation P is the 
summation of these waves from all points on the wave front. 

Assuming no variation with angle or x, the incident wave has the form 

#I = $o~(+)Ho(l)(Ky) 
where H0(l)(kr) is a Hankel function of the first kind, K = Znjh and S(+) is the field distribu- 
tion on the lens aperture. For uniform illumination of the lens aperture we choose S(+) = 1. 

The cylindrical wave generated at the point Q is 

which is the appropriate Green function of the scalar Helmholtz equation (Morse and 
Feshbach 1953). The  Fresnel-Kirchhoff integral is thus 
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Figure 1. Coordinate system for the line focus. 

where n is a unit vector normal to the wave front. Xow 

Equation (1) becomes 

t,hp = yf Ĵ , {H,’1)(kf)Hl(2)(ks) cos(%, s) - H,c1)(kf)H,’2)(ks)} d+. 

For points near the focus p l f  < 1, so that 

and 
1 s N f 1 - - cos(e-c#J) 1 ;  

Using these approximations 

or 

Using the approximations for Ikrl 9 1 

cos(12, s)  N 1. 
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equation (2) now reduces to 

$p = - '1 $ {l+-cos(O-+)~exp{ikpcos(O-+)}d+, P 
= @ 2f 
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(3) 

T o  evaluate the integral we use Neumann's expansion 
io 

exp{ikp cos(0-+)) = 2 inJ,(kp) cos{~(O-+)} 
n= - m 

where J,(kp) is a Bessel function, and IZ an integer. 

2.1. Approximation with plf 4 1 
The  integral in equation (3) becomes 

d0 

$p = - 5 1 exp(ikp cos(0 - +)} d+ 
7 - @ o  

where +o is the angle subtended by half the lens aperture at the focus. Use of Neumann's 
expansion and integration term by term gives 

sin ndo 
cos n0 t,hp = - - 2 inJn(kp)- WO io 

7 n = - m  n 
2.2. The complete integral 

The  second term in equation (3) was 

A$p = ---I $0 P do cos(0-+)exp{ikpcos(O-+)}d+. 
2f -bo 

Again using Keumann's expansion and integrating term by term we have 

m sin(% + l)+o 
cos(n + l ) 6  *o P A$p = - -- 2 inJn(kp) { 

2 f n S - a  n + l  

sin(n - l)+o 
72-1 

+ 

(4) 

Combining equations (4) and ( 5 ) )  and using the symmetry of terms in E, we have for 
the complete solution 

*o * sin n+o 
$p = -2- 2 E,inJ,(kp) [- cos n0 

7 n=O n 

11 sin(n + l)+o sin(n - 
cos(n + 1)O + cos(n - 1)s +$I n + l  n -1  

where = 1, E, = 2 (n # 0). 

3. Properties of the line focus 
Calculations of equation (6) were performed on the University of London Atlas com- 

puter, using FORTRAN v. For f / X  = 10, kf N 60 and 30 5 ks 5 90. I n  this region the 
use of the asymptotic approximation for the Bessel functions introduces an error of less 
than 5'7;. The effect of the term is illustrated in figure 2. When the term is included 
the maximum along the axis occurs not at the focus but between the focus and the lens, 
as seen in figure 2(a). For lp/f{ = 6 ,  is 6% of y!~~. Figure 2(b) shows the variation 
of phase in the transverse focal plane. There is a phase change of 180" between adjacent 
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Figure 3. Intensity variation in the transverse focal plane ( f i h  = 10, D/h  = 10). 
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maxima in the intensity. Equation (4) alone produces a discontinuous step, but inclusion 
of Ai/+ shows a smooth transition. Because of its evident importance the term is 
included in all the following results. The  next term in the series is O(p2/f2)  and should 
contribute less than 4%. It is not considered here. 

A typical example of the intensity variation in the transverse focal plane (0 = 90" and 
0 = 270") is shown in figure 3. The  spatial resolution depends upon the width of the 
central peak. Two widths are defined at - 3 dB ( W,) and at - 10 dB (Wlo) as shown. The  
width is seen in figure 4 to be a function off number (Fno) only, where F,, = f / D .  The  
width is always finite. 

' O t  / 

/ 

Figure 4. Beam width as a function off number. 
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Strictly the scalar diffraction theory is valid only for f > D 9 X and f 9 p. T h e  first 
of these conditions is certainly not satisfied here since f < D is used, and the other condi- 
tions are only marginally satisfied because of the long wavelength. However, the experi- 
mental results of Richard (1968) indicate a remarkable agreement with theory, to within 
30% at .fno = 0.38. Thus the scalar theory is expected to show the correct features to 
within SOYo. 

The  central maximum along the principal axis is between the focus and the lens, and 
approaches the focus as the aperture is increased. The  length of the central peak decreases 
with increasing aperture, The  length at - 3 dB of the maximum (L3)  is shown in figure 5 .  
There is some dependence upon the focal length. Again the length is always finite. 

T h e  phase variation along the principal axis is cyclic. A ‘guide wavelength‘ A, may 
be defined as the distance separating points of equal phase, and is found to be greater than 
the free-space wavelength. This is shown as a function of F,, in figure 6. 

0.9 
0 0.5 1.0 1.5 2.0 2.5 

Cl, 

Figure 6. Variation of ‘guide wavelength’ A, with f number. 

The  results outlined above show that a line focus has similar properties to a point focus, 
but in two dimensions. 

4. Theory of scattering of a focused beam by a metal cylinder 
The incident field is described by equation (6). Two cases are considered: (a) parallel 

polarization (E , , ) ,  the electric vector being parallel to the cylinder axis, and ( b )  perpendicular 
polarization (E,) with the magnetic vector parallel to the cylinder axis. 

4.1. Parallel polarization (Ell) 

field the boundary condition at the surface of the cylinder ( p  = a) is 
The  incident electric field E,I is described by equation (6). If EZs is the scattered electric 

E,I+EzS = 0. (7) 
The  scattered field is a cylindrical wave of the form 

Multiplying both sides of equation (7) by cos ne de and integrating from --7i‘ to n‘ we have 
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Use of the recurrence relation for Bessel functions reduces this to 

A,  - 2$0 . sinn40 Jn(ka)-i(a/2f)Jn'(ka) 
E,ln- 

sr n HL1)(ka)  
Thus the theory is the same as that for plane-wave scattering except that 
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(9) 

4.2. Perpendicular polarization (E,) 

at p = a is 

where from Maxwell's equations 

The incident magnetic field H,I is described by equation (6). The  boundary condition 

Eo1+ Eos = 0 (11) 

i aH, 
k ~p 

Eo = --,-. 
The scattered magnetic field is 

W 

HZS = 2 BnHkl)(kp) COS ne. (12) 
n=O 

Multiplying both sides of equation (1 1) by cos n0 d0 and integrating from - T to sr we have 

2 4 ~ ~  sinn4, ia 
-B,H,")'(ka) = ---,in (- [J,'(ka)- - (J;- ,(ka)- J',+,(ka)}] 

sr n 4f  

Use of the recurrence relations for Bessel functions reduces this to 

2$0 sinn4, J,'(ka)(l- i/2kf)-(ia/2f)Jn"(ka) 
(13) B,  = ~ enin ____ 

7T n HL1) ' (ka)  
The prime denotes differentiation with respect to the argument. 

Again this theory is the same as that for plane-wave scattering except that 

sin n$o 
J,'(ka) + - _.- 

7 i n  (14) 

This theory may be applied directly to scattering by dielectric cylinders. The  only 
requirement is that the Bessel functions describing the incident plane wave be replaced by 
the appropriate function in equations (10) or (14). 

Angle (deg) 
0 30 60 90 I20 150 I80 

-201 q, ,o/h=0.2 

Figure 7(a). 
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Figure 7(b ) .  

' O t  

Figure 7(c). 
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Figure 7(d). 
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Figure 7 ( f ) .  

Figure 7 ( g ) ,  
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Figure 7(h) .  

Figure 7(a)-(h).  Scattering of a line focused wave by metal cylinders (kR = 100). 
plane wave ; - - - focused wave ( f / h  = 10, F,,, = 1.0); -.-a- focused wave 

( f / X  = 10, F,o = 0.5); -*a-*.- focused wave ( f / h  = 10, F,,, = 0.3). 

5. Computed scattering of a focused wave by a metal cylinder 
Computations were performed for both polarizations for plane-wave and focused-wave 

scattering. The  results are presented in figure 7 for a range of a / h  and f number. The  
detector is taken at a radius R such that kR = 100. This number was chosen for con- 
venience. 

All the curves are drawn to the same scale for ready comparison. The  intensities are 
normalized in two ways: first relative to the intensity at the origin (this is unity for a plane 
wave), and second relative to the forward scattered intensity with parallel polarization 
(E, , ,  6 = 0') of a plane wave by a cylinder of radius a / h  = 1.0. 

In  the immediate vicinity of the focus the focused waves are approximately plane. For 
a very small cylinder the scattering by focused and plane waves should be similar. This is 
shown to be true for a/X = 0.2 in figures 7(a )  and 7(e).  

For the larger cylinders ( a / h  2 1.5) there is very little scattering perpendicular to the 
direction of incidence of a focused wave compared with plane-wave scattering. This is 
expected from the plane-slab approximation, where all the incident power should be 
reflected into 0 = 180". 

The  scattered intensity shows two major peaks. There is the large peak of reflected 
intensity (e = 180") and a large peak in the forward direction (e = 0'). But there should 
be a shadow in the forward direction, and it is important to note that this peak is of scattered 
intensity. T o  obtain the shadow the diffraction pattern would have to be determined. The  
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diffracted field EaD is given by (van der Hulst 1957) 

EZD = E,' +E,'. 
For a plane wave the reflected intensity increases monotonically with cylinder radius. 

However, this is not true for focused waves, the reflected intensity reaching a peak and then 
decreasing. Further, the intensity reflected by the larger cylinders is less for the smaller f 
numbers, and therefore narrower beams. This is opposite to what would be predicted by 
an improved slab approximation. 

I t  is suggested that both these properties are due to the finite size of the beam in the 
focal region. As the cylinder radius increases the field strength at the cylinder surface 
decreases, and decreases more rapidly for the smallerf numbers. 

6. Conclusion 
The electromagnetic field in the vicinity of a line focus has been expressed in cylindrical 

coordinates, and an expansion obtained in a form readily applicable to cylindrical scattering 
problems. The  line focus has been shown to have properties similar to those of a point 
focus (Carswell and Richard 1964). 

The  scattering by an infinite cylinder of a line focused wave can be obtained by a 
simple modification of the existing theory for scattering of a plane wave. An infinite plane 
metal slab for normal incidence would show a large reflected signal only and nothing per- 
pendicular to the incident beam. Scattering of a focused wave by cylinders of moderate 
size (aih 2 1.5)  exhibits similar properties. 

Carswell and Richard (1964) pointed out that the ideal beam shape for plasma diag- 
nostics would be long and narrow. However, the beam length and beam width decrease 
together, a consequence of which is the anomalous behaviour of the reflected signal, The  
infinite plane slab approximation cannot readily be used. 

The  study of scattering of a focused beam overcomes this difficulty. The improved 
spatial resolution is retained, and the possibility arises of studying inhomogeneities by 
focusing the beam at different points within a plasma. For this purpose the energy should 
be concentrated into as small a volume as possible, requiring lenses of very large aperture. 

The scalar theory as outlined here provides only an estimate of the effects of a focused 
beam on scattering. At microwave wavelengths the full vector theory must be used to 
obtain a rigorous result. 
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